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ABSTRACT

This paper describes research done to apply the Fractional Step Method to finite-element

simulations of natural convective flows in pure liquids, permeable media, and in a directionally

solidified metal alloy casting.

The Fractional Step Method has been applied commonly to high Reynold's number flow

simulations, but is less common for low Reynold's number flows, such as natural convection in

liquids and in permeable media. The Fractional Step Method offers increased speed and reduced

memory requirements by allowing non-coupled solution of the pressure and the velocity

components.

The Fractional Step Method has particular benefits for predicting flows in a directionally

solidified alloy, since other methods presently employed are not very efficient. Previously, the

most suitable method for predicting flows in a directionally solidified binary alloy was the

penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The

Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby

allowing mote efficient solution of the matrices. The Fractional Step Method also lends itself to

parallel processing, since the velocity component stiffness matrices can be built and solved

independently of each other.

The finite-element simulations of a directionally solidified casting are used to predict

macrosegregation in directionally solidified castings. In particular, the finite-element simulations

predict the existence of "channels" within the processing mushy zone and subsequently

"freckles" within the fully processed solid, which axe known to result from macrosegregation, or

what is often referred to as thermo-solutal convection. These freckles cause material property

non-uniformities in directionally solidified castings; therefore many of these castings are

scrapped.

The phenomenon of natural convection in an alloy under-going directional solidification, or

thermo-solutal convection, will be explained. The development of the momentum and continuity

equations for natural convection in a fluid, a permeable medium, and in a binary alloy

undergoing directional solidification will be presented. Finally, results for natural convection in



apureliquid, natural convection in a medium with a constant permeability, and for directional

solidification will be presented.

INTRODUCTION

Natural convection occurs in many physical situations. Its most common occurrence arises from

an unstable thermal gradient in a gas or liquid. Thermally driven natural convection can also

occur in permeable media. Natural convection can also occur in much more complex situations,

such as in a liquid metal alloy undergoing directional solidification. Here, the driving force can

be thermal, but density differences driven by concentration differences in the liquid can also

occur.

The ultimate goal of the work described here was to develop a mathematical model and

subsequently the capability to simulate the fluid flows occurring in a directionally solidifying

alloy, using the fractional step method. The fundamental equations describing flow in a

directionally solidifying alloy are very complicated. In addition, implementation of the fractional

step method is challenging. For this reason, the fractional step method was first applied to the

equations governing natural convection in a single-phase fluid that can be treated as containing

only a single constituent. Next, the fractional step method was applied to the equations

governing natural convection in a permeable medium, also containing a single-phase fluid of one

constituent. Application of the fractional step method to the simulation of this type of physical

situation is slightly more complicated than that for a fluid. Finally, the fractional step method

was applied to the equations governing natural convection in a binary alloy undergoing
directional solidification.

This paper is laid out as follows. The section following discusses the phenomena occurring in a

directional solidifying alloy that contribute to natural convection and the reasons for needing to

understand the flow. Fundamentals of the fractional step method are discussed next. The

application of the fractional step method to the equations governing flow in a fluid and in

permeable media is presented next. Presentation of the fractional step method as applied to the

equations governing flow in a binary alloy undergoing directional solidification follows. Next,

results of the simulations for the three different flow situations are presented. Finally,
conclusions will be discussed.

DIRECTIONAL SOLIDIFICATION

DEFECTS IN ALLOYS AND THEIR CAUSES

Directional solidification is a process by which aircraft engine turbines are produced. Casting

defects often necessitate that the entire casting be scrapped, which is very costly. A major defect

that leads to scrapped castings is that of concentration non-uniformities. These casting non-

uniformities are a direct result of the phenomena occur during the solidification process and

affect the consistency and integrity of the casting's structural properties. Two phenomena that



produceconcentrationnon-uniformitiesandaffecttheir severityaremicrosegregationand
macrosegregation.Microsegregationis aphenomenonthatoccursoveradistanceapproaching
thesizeof dendritesin themushyzoneandis dependenton theshapeof thedendritesandsolute
diffusion in the liquid andsolid [1]. Macrosegregationcausescompositionaldifferencesto occur
overadistanceapproachingthatof the size of the casting or ingot, and is normally large

compared to that caused by diffusion or microsegregation. Consult [1,2,3] for additional
information.

During the directional solidification process, the casting is cooled from below. This minimizes

convection by imposing a stable temperature gradient. Strictly speaking, due to the stability

impressed on the melt by cooling it from below, thermal convection is suppressed. However,

depending upon various parameters such as the Solute Rayleigh Number, temperature gradients

perpendicular to the gravity vector can interact with the solute field to cause sideways diffusive

instability [4,5]. Even more significant is the phenomenon of solute convection occurring when

solute rejected at the solidification interface is lighter than the solvent. This combination of

phenomena is often referred to as thermosolutal (double diffusive) convection. Thermosolutal

convection can cause severe macrosegregation of material.

This severe macrosegregation in the liquid phase causes defects to occur. These defects are made

up of long narrow streaks oriented roughly parallel to the direction of gravity. These streaks, or

"freckles" have solute concentrations that vary significantly from that of the surroundings [6].

These freckles make the casting more prone to fatigue cracking at the interfaces. Therefore, the

castings are scrapped. Several experimental works with nonmetallic transparent systems [7,8]
have verified this.

PRESENT SIMULATION CAPABILITIES

Previous research, related to the research proposed herein, as described in Reference [9] has

come a long way in simulation of solidification processes. The models currently used by

Heinrich et al. [9,10,11,12,13] include interdentritic diffusion, thermosolutal convection, and

solute and energy conservation. Since the mushy zone is a metallic dendrite assembly of low,

non-uniform, and anisotropic permeability, it is simulated as a region of anisotropic permeability

with no predetermined size or shape [14].

Presently, the size of the domains that can be simulated is limited because of the large amount of

computer resources required. This limitation is attributed mainly to two issues: 1) In order to

adequately capture the diffusion processes occurring in the mushy zone, very fine meshes are

required, on the order of dendrite spacing, and 2) since permeability theory is used to model the

varying liquid fraction of the mushy zone, the only numerical algorithms that have been

successfully employed to solve the momentum equation stiffness matrix are direct solvers.

The penalty method is presently the algorithm employed most frequently for the solution of the

solidification momentum equation stiffness matrices. The pressure is not calculated directly in

the penalty method formulation. Rather, the pressure term is eliminated by equivalencing it to

the continuity equation (which, numerically, has a value very near zero) times a very large
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penaltyparameter.All velocitycomponentsarecalculatedsimultaneouslyat eachtime step.
Therefore,for athree-dimensionalfinite-elementcomputationdomainconsistingof N nodes,the
momentumequationstiffnessmatrixhasasizeof order3NX 3N. Thestiffnessmatrixgenerated
by thepenaltymethodrequiresdirectmatrixsolvers,dueto thenumericalstiffnessintroducedby
thepenaltytermanddueto thepermeabilityterm.
Thecomputerresourcesrequiredbydirectformulationsareevenmorethanfor thepenalty
method,sincethematricesgeneratedfor adirectmixedformulationarenon-symmetric.The
pressureis calculatedwith noapproximations;thereforetherearefour unknownspernode,
makingthestiffnessmatrix sizeof order4NX 4N. Sincedirectformulationscharacteristically
produceverylargeill-formed stiffnessmatrices,directformulationsarenormallyusedonly for
calibrationof thepenaltymethodandothermethods[9].

TheGallerkinLeast Squares method was used in the 3D computations described in References

[13] and [15], and allowed for large domains to be simulated. However, the use of this method is

restricted and very difficult to use.

The attractive feature of the fractional step method is that the velocity components and the

pressure can be de-coupled and solved independently. This leads to stiffness matrices that are

much smaller and therefore much more manageable. In fact, this allows the solution of flow in

large domains that were not realistic previously. The fractional step method is described next.

FUNDAMENTAL PRINCIPLES OF THE FRACTIONAL STEP METHOD

The fractional step method has been used extensively for solution of the incompressible Navier-

Stokes equations in Computational Fluid Dynamics (CFD). Chorin [16,17,18] introduced the

method over thirty years ago and Temam [19] independently came up with similar ideas. A

general description of its implementation is discussed here.

Beginning with the dimensionless form of the incompressible Navier-Stokes equation and

continuity:

Un+l _ U n

I
V2u,+I =-Vp,÷_ -u, .Vu, +f, (1.1)

At Re

V.u =0 (1.2)

where the velocity has been discretized in time, the viscous and pressure terms are treated

implicitly and the convective and forcing term f, are treated explicitly. This equation is split into

two steps, the intermediate "viscous" step and the projection or "inviscid" step.
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ti.+1 I
-V2fi.+l =-u.-Vu. +f. (1.3)

At Re

and

u.+t-fi.+t I V2 (u.+t-fi.+_ )=-Vp.+_ (1.4)
At Re

The intermediate velocity fi.+t calculated in equation (1.3) does not necessarily meet continuity

requirements. This intermediate velocity is corrected in equation (1.4) so that U,÷l, the velocity

at the end of the time step, does meet continuity. The pressure and subsequently the pressure

gradient, are calculated by removing the implicit viscous term in equation (1.4), and then taking

the divergence. Due to continuity, equation (1.2), V-u,.t must vanish and the pressure is

obtained from:

V 'fin+ I

Vep,+l - (1.5)
At

Removing the implicit viscous term or dealing with it in alternative ways makes the calculation

of the pressure much more straightforward. The reason most often cited for removing this term

is that the intermediate velocity profile is projected into an "inviscid" vector space, orthogonal to

the intermediate "viscous" space [20,21]. Some references treat the viscous term explicitly [22]

in equation (1.3) so that it does not appear in equation (1.4). However, explicit treatment of the

viscous term restricts numerical stability, particularly for low Reynolds number flow fields.

Other references include a more mathematically pure derivation [23,24]. In these references, the

fractional step method derived above is modified as follows:

The pressure in equation (1.4) is replaced with p = _v - At V2_"
Re

- ( At VZq/.+_) (1.6)u"+lAtli"+t Rel V2(u.+l_fi.+l)=_V I//.+t Re

The following terms are removed from equation (1.6) to take on the standard form of the

projection step:

u.+t - fi.+l = -V q/.+l (1.7)
At

At

Applying the Laplacian Operator to equation (1.7) and multiplying both sides by "_e yields an

equality for the remaining terms in equation (1.6); therefore removing them is mathematically
correct.

Equation (1.5) is now a Poisson equation for _' instead of p:



= (1.8)
At

and the pressure at the end of the time step is calculated as:

At
P.+I = Ig.+l - _ V2_.,l (1.9)

Re

Whether calculating the pressure from equations (1.6), (1.8), and (1.9) is more accurate than

calculating it directly from equations (1.3) and (1.5) is application dependent and must be tested

in practice [23].

THE ACCURACY OF THE FRACTIONAL STEP METHOD

A number of authors have predicted the accuracy of the fractional step method for

incompressible flow [23,24,25,26]. The general consensus is that the velocity can be determined

to second-order accuracy. However, there is disagreement on pressure. Some claim the pressure

can be determined to second order accuracy [27,28], while others claim that the very nature of

the fractional step method limits the pressure to first-order accuracy no matter what steps are

taken to improve the method [25,26]. Fortunately, there is consistent agreement on how to

improve its accuracy.

The three main methods of ensuring acceptable accuracy for the fractional step method ale:

1) Accurate selection of boundary conditions for the intermediate velocity as suggested by

Kim and Moin [29].

2) Accurate boundary conditions for the pressure by Orszag et al. [30] and E. and Liu

[21,31].

3) Pressure-correction schemes as demonstrated by Van Kan [28], Bell et al. [27],

Quartapelle [22], and Gresho [32,33].

The first two items hint at one of the inherent stumbling blocks of the fractional step method

[25]. There is only one set of the "real" boundary conditions: the boundary condition for the

divergence-free velocity. Since the splitting of the Navier-Stokes equations into two steps

requires two sets of boundary conditions, one must be very careful in setting up these bouridary
conditions.

The third item substitutes the calculation of the pressure at every time step with an "incremental"

pressure calculation. That is, the pressure is adjusted or corrected at every time step relative to

the previous time step's pressure.

MATHEMATICAL MODEL FOR NATURAL CONVECTION: WITH AND WITHOUT

PERMEABILITY



The development of the equations for the solution of Navier-Stokes equations for natural

convection in a single-phase, single-constituent fluid and in a permeable medium are very

similar. The only difference is the permeability term. Therefore, the development of the

equations for a permeable medium are developed here. The equations for natural convection in a

fluid can be obtained by removing the permeability term.

DEVELOPMENT OF DIMENSIONLESS MOMENTUM EQUATION FOR NATURAL

CONVECTION IN A PERMEABLE MEDIUM

Beginning with the dimensional momentum and continuity equations for a Newtonian Fluid with

Constant Density and Constant Viscosity, as found in Appendix C.5 of Panton [34], and with the

permeability term added:

)Po -_7 -+u''V'u" =-V'p'+,uV'2u'-,u(K')-' u"+ pg'

V"U' = 0

(2.1)

where the permeability vector K' is defined from the Darcy equation [35]:

(2.2)

The primes indicate dimensional terms. Besides the addition of the permeability term, the

original Panton equation has been slightly revised ( ,o0 on left hand side) to allow using the

Boussinesq approximation [36]. Equation (2.1) shows the permeability term as a vector to

account for its anisotropy. For the analysis described in this section, K is assumed the same in

both the x and y directions, therefore, the permeability term will be shown as a scalar term.

For convenience, a component of the hydrostatic pressure (based on the reference density) is

separated from the pressure:

p' = p" + po (g:x' + g;y') (2.3)

where p" is a modified pressure, and the reference density P0 is defined as the density of the

fluid at T = TO. The gradient of the pressure can be written as:

V'p' = V'p" +/90 g'

Insert equation (2.4) into equation (2.1) and divide all terms by/90:

(2.4)
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_-I- u'. V'u' = --_-1 V'p'* -g'+v V'2u'-v K-' u'+--P--P g '
bt' Po Po

(2.5)

Now use the Boussinesq approximation for p, p = Po[l + fir (T'-To)] • The dimensional

momentum equation (after canceling the g' terms) becomes:

+u'.V'u'=-±V'p" +vV'2u'-vK-'u'+ (T'-Tg)g'
_' Po

Non-dimensionalize according to the following reference variables:

(2.6)

Characteristic Length H

Characteristic Velocity V = x[flr g AT H

x' y" u'

x='_-, y=_-, U=--V

" P. 0p =_ where p = p°D2
Po H2

K
V = V'H Da =

H 2

g" T'__Z_-_,=-- r= to"
g AT

t' H 2
t =- where I: =

T DT

Substituting these terms into Equation (2.6):

(2.7)

vabu+___u.Vu _D_v. vV_2= +-_V u- Da-_u+ fir gATT_H-_ _ H 3.p

Substitute the characteristic velocity V into Equation (2.8):

(2.8)

+

Divide by fit gAT:

D_ ._..
4flTgATHDT 0u +flTgATu.Vu=__H_vvp

H 2 /_

v_/flvgATH V=u v_flTgATH Da-,u+flrATTg _
H 2 H 2

(2.9)
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c3u + u. Vu = D_ Vp*

4fit gAT H 2 _t fit g ATH3

v4rff V2u V_" Da-' u + T _,

4fit gAT H _ 4fit gAT H 2

(2.1o)

For convenience, drop the * from p and organize according to the following dimensionless

parameters:

The Rayleigh Number" Ra r = fir g AT H a
rOT

The Prandtl Number:
V

er -"

(2.11)

This results in the dimensionless momentum equation for natural convection in a permeable
medium:

_ _'U.VU- PrRaT Vp+ V2u - Da-_u+T_ (2.12)

The dimensionless continuity equation has the same form as the dimensional version:

V.u=O (2.13)

APPLICATION OF THE FRACTIONAL STEP METHOD TO THE MOMENTUM

EQUATION FOR NATURAL CONVECTION IN A PERMEABLE MEDIUM

In order to build stable stiffness matrices for the finite element method, equation (2.12) is

rearranged to treat the viscous term and permeability term implicitly and all other terms are

moved to the fight hand side to be treated explicitly. The fractional step method requires that the

transient term be discretized, therefore the subscripts n and n+l are added, where n refers to the

value at the previous time step (known) and n+l refers to the value at the present time step

(unknown).

u°+l-u , .[ Pr Da_ l _[ Pr V2Ua+l =

At _f_-_r I'_Ra r u_+! _Rar

This is rearranged to the following:

Pr Rar
Vp,+l -u, -Vu, +'In Ig (2.14)



1 (I+AtPrDa -I -AtPrV2)u.÷, = -----_1 Vp.+,+f. (2.15)
At _ Pr Ra v

where the forcing term f. = -u.. Vu. + I'. _ + U n •

Use the equality P.+t = P. + (P.+_ - P. ) to allow calculation of the incremental pressure at every

time step. Equation (2.15) then becomes:

1 (l+AtPrDa-'-OAtPrV2)u.+,= [Vp"+V(P"÷'-P")] I-f. (2.16)

At _ Pr Ra r

Split Equation (2.16) into a intermediate (viscous) step and a projection (inviscid) step,

respectively:

1 (I +AtPrDa-'-AtPrV2)fi.÷, = 1 Vp. +f. (2.17)
At _ Pr Ra r

1 (i+AtPrDa_,_AtPrV2)(u.._fl.+,)=
Pr Ra r

V(p.÷, -p.) (2.18)

where fi.+_ is the solution to the intermediate step and does not meet continuity. Now. take the

divergence of the projection step, equation (2.18):

At _._'-_1 V .{(1 + At Pr Da-_ - At prV2)(u.., - u.÷_ )} =_ PrRar1
V2(p.+,-p.)(2.19)

Note that at the end of the time step, the velocity must meet continuity, therefore the divergence

of both u.._ and V 2 u.+_ are 0:

V2(p.+ -p.)= _ (I+AtPrDa-'_AtPrV2)V.fi.+,
At

and the viscous term is ignored:

(2.20)

V2(p.+,-p.)= _ (l+AtPrDa-')V.fl.÷, (2.21)
At

To find the divergence-free velocity at the end of the time step, solve for each component of

velocity from equation (2.18), again with the viscous term ignored:
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1 At 0 (P.+I-P.)
u"÷'=u"*l (l+AtPrOa-') Pr_-_ Ox

(2.22)

_ 1 At __yv.+, = v.+, (l+AtPrDa-') _ (P"÷t-P")
(2.23)

For a pure liquid, the Darcy term K and its dimensionless counter-part Da approach infinity,

therefore K -_ and Da -_ approach zero and can be eliminated from the above equations. In order

to solve the above equations numerically, the finite element method is applied. The particular

type of finite element method applied is the Gallerkin Method. Consult Heinrich and Pepper

[37,38]for details on how the finite element method was applied.

THE FRACTIONAL STEP METHOD APPLIED TO THE MOMENTUM EQUATION

FOR DIRECTIONAL SOLIDIFICATION IN A BINARY ALLOY

The above formulation demonstrates the process of applying the fractional step method to a

single-constituent, single-phase fluid, with and without permeability. Directional solidification

of a binary alloy is much more complicated. This process includes two constituents, two phases

and also has anisotropic permeability properties. Developing the formulation here would require

considerable space. Therefore, only the results of the formulation are presented. Please consult

[9] for more details.

The simulation of directional solidification in a binary alloy includes conservation of energy,

species, mass, and momentum balance. Since the fractional step method affects only the

conservation of mass and momentum balance, only those equations are presented here. Please

consult [9,39,40] for more details regarding the equations for conservation of energy and species.

The dimensionless equation for momentum balance in a directionally solidifying binary alloy is

[91:

+ &Da-'u -1--_V2u = -¢vp-lu .Vu
at Re Re ¢

(3.1)

0/3a,u+ /3V__ 3 Re _a0 +O[_T+ Re"RasSc" (SL -l)]g

and the continuity equation is:

where

V.u=/_ a¢
at

13 is the shrinkage coefficient and is defined as /3 = Ps - Pl
P_

(3.2)
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Themomentumequation,equation(3.1)is split up into two stepsin orderto besolvedusingthe
fractionalstepmethod.Thedimensionlessequationfor the intermediatestepis:

1
1(1 +¢AtDa-I ft.+, V2fi.+l =f_-_Vpn

At _ Re Re

(3.3)

where the (explicit) forcing term fn is defined as:

/]At _¢ ÷_v__+_r3a_ T Ras - _l)]_+u___.. (3.4,¢ _t Lt_e2 er +_ (SL At

The dimensionless equation for the projection step is:

1(1 + ¢ At Da-' _(u.+, -ft.÷,)- R-_V2 (u.+, -fin÷, ) = --¢V (p.+t - p, ) (3.5)
Ate, Re )"

The implicit viscous term is ignored and continuity is imposed by taking the divergence of

equation (3.5):

V.[oV(p.+,_pn)]=V'6.+, fl 2¢
At At

(3.6)

where the dimensionless term o is a function of the fraction liquid ¢ and the anisotropic Darcy

term and is a vector quantity:

o:(o0
where the individual components of o are as defined by Sabau, et al. [41]:

(3.7)

crx= ¢ , and o'y= ¢
1+ CA_____tt 1+ CAt

Re Da x Re Da y

(3.8)

The dimensionless scaling parameters are:
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The Reynold's Number-

The Thermal Rayleigh Number"

The Solute Rayleigh Number"

The Prandtl Number"

The Schmidt Number:

VH
Re=_

V

Ra T = flrg GH4
vD r

Ra s = flsgS0 H3
vD s

V
Pr --- _

Dr

V
Sc =--

Ds

(3.9)

As was done for the case of natural convection in a liquid or a permeable medium, the finite

element method was applied in order to solve the above equations numerically.

RESULTS

Steady-state results are presented for natural convection in a fluid and in a permeable medium.

Transient results are presented for a binary metal alloy under-going directional solidification.

RESULTS OF SIMULATING THE MOMENTUM EQUATION FOR NATURAL

CONVECTION IN A PERMEABLE MEDIUM

Figures 1 - 6 show steady-state simulation results of the fractional step method applied to the

momentum equation for natural convection in a fluid and in a permeable medium. Note that

Figures 1 - 5 are contour plots of the temperature with the velocity vectors super-imposed.

Figure 6 is a contour plot of the pressure for the same case as Figure 5. There are 41 nodes in

each direction in all eases presented.

The results are presented in dimensionless form, with a dimensionless area of I X 1. The

dimensionless temperature is 1.0 at the bottom and 0.0 at the top. The gravity vector is oriented

in the minus y direction in all simulations, to create an unstable thermal condition. The gravity

vector has a magnitude of 9.81 m/s 2 in all simulations. Table I summarizes these results, listing

the dimensionless parameters defined in equation (2.11). Fluid properties are given, along with

appropriate scaling parameters that correspond to the Rayleigh Numbers and Prandtl Numbers

listed. In two of the cases listed, fluid properties of air and water at 300 K were used. Consult

equation (2.7) to determine how reference variables relate to physical dimensions, boundary

conditions, and fluid properties.

RESULTS OF SIMULATING THE MOMENTUM EQUATION IN A BINARY ALLOY

UNDERGOING DIRECTIONAL SOLIDIFICATION
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Figure7 showstherectangularsimulationdomainof a 0.008 m by 0.03 m rectangle for an alloy

comprised of 94.2 % Lead, 5.8 % Antimony by weight (Pb-5.8% wt. Sb). A mesh spacing of

0.0002 m is used, which is on the order of the primary dendrite arm spacings. The initial

condition consists of a fixed temperature at the bottom boundary (Y' = 0.0) set to the alloy

liquidus temperature and an imposed thermal gradient of G0 = 12,000 K/m (positive with respect

to Y') throughout the liquid melt. The liquid melt is of uniform composition so (5.8%). The

simulated boundary conditions are an imposed thermal gradient of 12,000 K/m at the top

boundary, and 0.36 K/s cooling at the bottom (the temperature at the bottom boundary is changed
2

in time). A uniform body force of 9.81 ntis is imposed in the minus Y' direction. Figure 7(a)

shows the three zones that are normally present during solidification: liquid, solid, and mush.

Figures 8 - 11 are simulation results of the fractional step method applied to the momentum

equation for natural convection in a binary alloy undergoing directional solidification. In this

case, the boundary condition is continually changing and there is not a steady-state condition.

The simulated time is 400 seconds in Figure 8 - 12.

Figure 8 shows the temperature and pressure, clearly indicating the imposed temperature gradient

and the resulting pressure gradient. Figure 9 shows a plot of the fraction liquid and the

concentration of the alloy throughout. The three regions are labeled on the left hand side of

Figure 9: "Liquid, "Mush" or mushy zone, and "Solid". At this solidification time, the mushy

zone is located approximately between Y = 0.007 and 0.010 meters. The "freckles" on the

concentration plot are clearly seen and are a result of thermosolutal convection. The distortion of

the fraction liquid from a purely vertical gradient is also obvious and is a direct result of the

thermosolutal convection. Figure I0 shows the same plot of fraction liquid and concentration as

in Figure 9, with the velocity vectors super-imposed. It is seen that the velocities emanate from

the regions of highest deviation from the base concentration of 5.8%. Figure 11 shows a close-

up of the velocities and concentration occurring just above the mushy zone. Finally, Figure 12

shows the velocities and concentration occurring in the mushy zone. The code is achieving

acceptable continuity when simulating velocities even in the mushy zone, where the magnitude

of the velocity is several orders of magnitude smaller than the velocities occurring in the all-

liquid region.

CONCLUSIONS

Natural convection is a phenomena common to fluids, permeable media, and also occurs in more

complex situations such as in a binary alloy under-going directional solidification. Thermo-

solutal convection in castings undergoing directional solidification leads to concentration non-

uniformities that necessitate scrapping the castings. The fractional step method has been

successfully applied to simulation of natural convection in pure fluids, permeable media, and in a

binary alloy undergoing directional solidification. Its use in simulations of directional

solidification allows larger domains to be simulated. The results presented here are for two-

dimensional domains only. Presently, efforts are underway to extend simulation of directional

solidification with the fractional step method to three dimensions.
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Table I

Scaling Parameters, Reference Variables, and Fluid Properties for Figures 1- 6

Figure Ra Pr Da AT a Fluid H a V a
(K) Properties (m) (m/s)

1 105 1.00 N/A 100 See Note b 1.0 0.32

2 105 7.00 N/A 100 See Note c 1.0 0.26

3 106 0.71 N/A 85 Air @ 300 K 0.05 0.38

4 106 1.0 10 .4 100 See Note d 1.0 0.31

5, 6 l0 s 5.83 10 .6 20 Water @ 300 K 0.06 0.06

a - ReferenceVariables given in equation (2.7).
-!

b - The thermal coefficient of expansion is assumed to be -0.0001 K , the kinematic viscosity

is assumed to be 10 -3 m2/s, and the thermal diffusivity is assumed to be 10 -3 m2/s.

c - The thermal coefficient of expansion is assumed to be -0.0001 K -_, the kinematic viscosity is
.4 2

assumed to be 7 X 10 .4 m2/s, and the thermal diffusivity is assumed to be 10 m Is.
-I

d - The thermal coefficient of expansion is assumed to be --0.001 K , the kinematic viscosity is

assumed to be 10 -3 m2/s, and the thermal diffusivity is assumed to be 10 -3 m2/s.

15



1.00

0.90

0.80

0.70

0.60

>" 0.50

0.40

0.30

0.20

0.10

Ref. Vector = 0.5

Tempemture
0.9375
0.8750
0.8125
0.7500
0.6875
0.6250
0.5625
0.5000
0.4375
0.3750
0.3125
0.2500
0.1875
0.12501
0.0625

I

I

0.0
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

X
Figure 1: Natural Convection in a fluid, Ra = 10, Pr = 1.
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Figure 2: Natural Convection in a fluid, Ra = l0, Pr = 7.
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Figure 3: Natural Convection in Air, Ra = 10, Pr = 0.71.
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Figure 4: Natural Convection in a Permeable Medium, Ra = 10, Pr = 1, Da = 10.
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Figure 5: Natural Convection in a Permeable Medium with
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Water as the Base Fluid. Ra = 10, Pr = 1, Da = 10 .
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Figure 6: Natural Convection in a Permeable Medium with Water

8 -6

as the Base Fluid. Ra = 10, Pr = 1, Da = 10.

18



I

LIQUID

I

0.02_

0.01S

0.01o

0.005

0.000 0.004 0.008

X' X'(a) (b)

Figure 7. (a) Basic domain and coordinate system for solidification of a binary alloy. (b)

Dimensions (m) and mesh spacing of the domain used in the simulations reported here.
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Figure 10. Fraction Liquid and Concentration Results for Pb-5.8 wt. % Sb.
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Figure 11. Concentration, Velocity Results near Mushy Zone, for Pb-5.8 wt. % Sb.

0.013

0.012

0.011

0.009

0.008

0.007

Ref.Vectors2.0E-7m/s

% Sb

6.95
6.80
6.65
6.50
6.35
6.20
6.05
5.90
5.75
6.60
5.46
5.31
5.16
6.01
4.86

Figure 12.

0.002 0.004 0.006
X

Concentration, Velocity Results inside the Mushy Zone, for Pb-5.8 wt. % Sb.

21



REFERENCES

[ 1] Kurz, W. and Fisher, D.J. "Fundamentals of Solidification". Trans Tech Publications. 1992.

[2] Porter, D.A. and Easterling, K.E. "Phase Transformations in Metals and Alloys, Second

Edition." Chapman & Hall. 1992.

[3] Flemings, MC. "Solidification processing". McGraw-Hill, New York, NY. 1974.

[4] Favier J.J. "Recent advances in Bridgman growth modeling and fluid flow." Journal of

Crystal Growth 99:18-29 (1990).

[5] Rouzaud A, Camel D, and Favier JJ. "A comparitive study of thermal and thermosolutal

convective effects in vertical Bridgman crystal growth." Journal of Crystal Growth 73:149-166

(1985).

[6] Nandapurkar P., Poirier D.R., Heinrich J.C., and Felicelli S. "Thermosolutal Convection

during Dendritic Solidification of Alloys: Part I. Linear Stability Analysis", Metallurgical

Material Transactions B. Numer. 20B: 711-721 (1989).

[7] Copley SM, Giamei AF, Johnson SM and Hornbecker MF. Metallurgical Material

Transactions. 1:2193-2204 (1970).

[8] Chen F, and Chen CF. J.FluidMech. 227:567-586 (1991).

[9] Heinrich J.C. and McBride E. "Calculation of pressure in the mushy zone", Int. J. Numer.

Methods Engng. 47, 735-747 (2000).

[ 10] McBride E, Heinrich JC, and Poirier DR. "Numerical simulation of incompressible flow

driven by density variations during phase change." Int. J. Numer. Methods in Fluids 31:787-800

(1999).

[11] Felicelli SD, Poirier DR and Heinrich JC. "Finite element analysis of directional

solidification of multi-component alloys", Int. J. Numer. Methods in Fluids 27:207-227 (1998).

[12] Heinrich J.C., Felicelli S., Nandapurkar P., and Poirier D.R., "Thermosolutal Convection

during Dendritic Solidification of Alloys: Part II. Nonlinear Convection", Metallurgical

Material Transactions B. 20B: 883-891 (1989).

[13] Felicelli S.D., Heinrich J.C., and Poirier D.R., "Three-dimensional simulations of freckles

in binary alloys." Journal of Crystal Growth 191:879-888 (1998).

[ 14] Felicelli S.D., Heinrich J.C., and Poirier D.R., "Simulation of Freckles during Vertical

Solidification of Binary Alloys." Metallurgical Material Transactions B. Numer. 22B: 847-859

(1991).

22



15]Felicelli SD,PoirierDR andHeinrichJC."Modelingfreckleformationin threedimensions
duringsolidificationof multi-componentalloys"Metallurgical Material Transactions B. 29B:

847-855 (1998).

[16] Chorin AJ "The numerical solution of the Navier-Stokes equations for an incompressible

fluid." Bull. Amer. Math Soc. 73:928-931 (1967).

[17] Chorin AJ "Numerical solution of the Navier-Stokes equations." Math Comp. 22:745-762

(1968).

[ 18] Chorin AJ "On the convergence of discrete approximations to the Navier-Stokes

equations." Math Comp. 23:341-353 (1969).

[19] Temam R. "Sur l'approximation de la solution des equations de Navier-Stokes par la

mehode des fractionnarires 11. Arch. Rational Mech Anal. 33:377-385 (1969).

[20] Almgren AS, Bell JB, and Szymczak WG. "A numerical method for the incompressible

Navier-Stokes Equations based on an approximate projection." SlAM J. Sci. Comput. 17, No. 2:

358-369 (1996).

[21] E W and Liu J-G. "Projection method I: Convergence and numerical boundary layers."

SlAM Journal of Numerical Analysis. 32:1017-1057 (1995).

[22] Quartapelle L. "Numerical Solution of the Incompressible Navier-Stokes Equations."

Birkhauser Verlag, Berlin. 1993.

[23] Shen J. "On error estimates of projection methods for Navier-Stokes equations: First-order

schemes. SlAM J. Numer. Anal. 29:57-77 (1992).

[24] Shen J. "On error estimates of some higher order projection and penalty-projection methods

for Navier-Stokes equations: First-order schemes. Numer. Math. 62:49-73 (1992).

[25] Strikwerda JC and Lee YS. "The accuracy of the fractional-step method". SlAM Journal of

Numerical Analysis. 37, No. 1:37-47 (1999).

[26] Perot JB. "An analysis of the fractional step method." J. Comput. Phys. 108:51-58 (1993).

[27] Bell JB, Colella P, and Glaz HM. "A second-order projection method for the

incompressible Navier-Stokes equations." J. Comput. Phys. 85:257-283 (1989).

[28] Van Kan J. "A second-order accurate pressure-correction scheme for viscous

incompressible flow." SIAM J. Sci. Stat. Comput. 7:870-891 (1986).

[29] Kim J, and Moin P. Application of a fractional-step method to incompressible Navier-

Stokes." J. Comput. Phys. 59:308-323 (1985).

23



[30] Orszag SA, Israeli M, and Deville MO. "Boundary conditions for incompressible flows."

Journal of Scientific Computing. 1:75-110. (1986).

[31] E W and Liu J-G. "Projection method II: Godunov-Ryabenki analysis." SIAM Journal of

Numerical Analysis. 33:1597-1621 (1996).

[32] Gresho PM. "On the theory of semi-implicit projection methods for viscous incompressible

flow and its implementation via a finite element method that also introduces a nearly consistent

mass matrix. Part 1: Theory." Int. J.forNumer. Methods in Fluids. 11:587-620 (1990).

[33] Gresho PM and Chan ST. "On the theory of semi-implicit projection methods for viscous

incompressible flow and its implementation via a finite element method that also introduces a

nearly consistent mass matrix. Part 2: Implementation." Int. J. for Numer. Methods in Fluids.

11:621-659 (1990).

[34] Panton RL. "Incompressible flow." 2 noedition. John Wiley & Sons, Inc. 1995.

[35] Bird RB, Stewart WE, and Lightfoot EN. "Transport Phenomena." John Wiley, New York,

NY, 1960, pp. 59 and 150.

[36] Chandrasekhar S. "Hydrodynamic and hydromagnetic stability." Dover Publications, Inc.

New York. 1961.

[37] Heinrich JC, and Pepper DW. "Intermediate Finite Element Method, Fluid Flow and Heat

Transfer Applications." Taylor & Francis. 1999.

[38] Pepper DW, and Heinrich JC. ''The Finite Element Method, Basic Concepts and

Applications." Taylor & Francis. 1992.

[39] Ganesan S and Poirier DR. "Conservation of mass and momentum for the flow of

interdendritic liquid during solidification." MetaU. Trans. 21B: 173-181 (1993).

[40] Poirier DR, Nandapurkar PJ, and Ganesan S. ''The energy and solute conservation

equations for dendritic solidification." Metall. Trans. 22B: 889-900 (1991).

[41] Sabau AS, Han Q, and Viswanathan S. "Projection Methods for Interdentritic Flows."

128 th TMS Annual Meeting & Exhibition. San Diego. 1999.

24



CONTACT

Douglas G. Westra

NASA / Marshall Space Flight Center

Mail Code ED25

MSFC, AL 35812

(256) 544-3120 (256) 544-0800 (FAX)

doug.westra@ msfc.nasa.gov

NOMENCLATURE

Scalars

fl

Po

PL

Ps

¢

V

Da

Ds

g

G

H

I

K

shrinkage coefficient due to phase change from liquid to solid

coefficient of thermal expansion, I/K

coefficient of solute expansion

reference density, kg/m 3

3

density of liquid, kg/m

density of solid, kg/m 3

fraction liquid

dynamic viscosity, N-s/m 2

kinematic viscosity, m2/s

pressure function, Pa

permeability, dimensionless

thermal diffusivity, m2/s

solute diffusivity, m2/s

value of gravity vector, m/s 2

reference thermal gradient, K/m

reference length, m

Identity Matrix

2
permeability, m
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,

P

Pr

Re

Rar

Ra s

Sc

So

t'

At

T'

AT

U'

V'

V

pressure, Pa

modified pressure, Pa

Prandtl Number

Reynold's Number

thermal Rayleigh Number

solute Rayleigh Number

Schmidt Number

reference solute concentration, %

time, s

time step size, s

temperature, K

reference temperature difference, K

velocity in x direction, rn/s

velocity in y direction, m/s

reference velocity, rrds

Vectors

g

n

t'

U _

gravity vector, rn/s 2

direction normal to boundary

direction tangent to boundary

velocity vector, m/s
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